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ABSTRACT 

The structural vibration of the cabin of Utrasport helicopter ATI-496 are studied. 

The dynamic behavior of the cabin is predicted by a Finite Element Model developed 

using 6-node elements, for simulated according to Kirchoff theory for plates. The natural 

frequencies of vibration and corresponding mode shapes of the cabin and its door are 

measured experimentally and used to validate the Finite Element model. The close 

agreement between experimental results and numerical predictions. The numerical and 

experimental validations demonstrate the accuracy of the developed model and 

emphasize its potential extension to investigate the application of smart materials for 

active control of vibration and noise radiation from hulls of aircrafts. 
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1.       INTRODUCTION 

Helicopters are susceptible to high levels of vibration and noise due to the 

unsteady aerodynamic environment in which the blades operate as well as the coupled 

structural mechanical system comprised of the rotor, fuselage, transmission and engine. 

The structure-borne vibration and noise isolation have been studied, for example, by 

Unruh [1, 2], Swanson et al. [3] and Sutton et al. [4], as means for reduced structure- 

borne noise transmission using engine isolator. 

In this work, a finite element model is developed to predict the vibration and 

mode shapes of a helicopter cabin. 

The model predictions are validated experimentally by measuring the mode 

shapes and natural frequencies of a full-size helicopter cabin and its door. The cabin is 

placed in an anechoic chamber and its vibration is measured by a scanning head laser 

vibrometer. Particular emphasis is placed in measuring the vibration of the door, in order 

to accurately predict its mode shapes and therefore study the optimal placement of 

actuators to reduce its vibration and the noise radiation inside the cabin. The structure is 

modeled using 3-node plate elements formulated according to Kirchhoff plate theory. The 

complete description of the element can be found in Bathe [5] and Razzaque [6]. The 

close agreement between the theoretical predictions and experimental data demonstrate 

the accuracy of the developed model. 

The model can be extended to include the application of smart materials to 

actively control the vibration and the noise radiation from the structure inside the cabin. 



The paper is organized in 4 sections and one appendix. In section 1, a brief 

introduction is given. The finite element model of the helicopter cabin is introduced in 

section 2. The experimental validation of the model predictions and the performance 

characteristics of the door and helicopter cabin are described in section 3. Section 4 

summarizes the main results of this work and gives some recommendations for future 

research. 

2.       FINITE ELEMENT MODELING 

A finite Element model is developed to describe the dynamic behavior of the 

Helicopter. The considered Shell element has both bending and membrane capabilities 

which permit both in-plane and normal loads. The element has six degrees of freedom at 

each node: translations in the nodal x, y, and z directions and rotations about the nodal x, 

y, and z axes. Stress stiffening and large deflection capabilities are included. A consistent 

tangent stiffness matrix option is available for use in large deflection (finite rotation) 

analyses. The geometry, node locations, and the coordinate system for this element are 

shown in Figure 1. The element is defined by three nodes, three thicknesses, an elastic 

foundation stiffness, and three orthotropic material properties. Orthotropic material 

directions correspond to the element coordinate directions. The element coordinate 

system orientation is described in Figure 1. The element coordinate system is used for 

orthotropic material input directions, applied pressure directions, and, under some 

circumstances, stress output directions. 

The element coordinate systems are right-handed, orthogonal systems. 



2.1      Discrete Kirchhoff theory elements 

The formulation of the element is based on the discrete Kirchhoff theory for 

bending of thin plates. The element governing relations are obtained by including 

transverse shear deformations. In this case the independent quantities are the deflection 

w, and the rotations  ßx  and  ßy, that need to satisfy continuity requirements. The 

transverse shear energy is neglected altogether and the Kirchhoff hypothesis is introduced 

in a discrete way along the edges of the element to relate the rotations to the transverse 

displacements. 

The discrete Kirchhoff theory elements with transverse shear deformations uses a 

generalization of the Kirchhoff hypothesis: points of the plate originally on the normal to 

the undeformed middle surface remain on a straight line but which is not necessarily 

normal to the deformed middle surface. With this assumption the displacements of a 

point of coordinates x, y, z are: 

u=zßx(x,y), 

v = zßy(x,y), (1) 

and   w = w(x,y) 

where w is the transversal displacement, ßx and ßy are the rotations of the normal to the 

undeformed middle surface in the x-z and y-z planes, respectively. 



The linear strain expressions include the bending and transverse strains as 

follows: 

Sb=ZK (2) 

and 
W,x+ßx' 

Wy+ßy 
(3) 

being  sband y the bending and transverse strains. In equation (2) K is the three 

component vector of curvatures: 

K = 
ßx,x 

Py.y 

ßx,y+ßy,x. 

(4) 

The strain-stress relations are: 

°b = 

°x 
a. 

*y. 

- z 

D„    D.2    Du 
D 

D 
^22       ^23 

33. 

K = zDK (5) 

and cr„ = 
yzi 

b13    b23 

^23       ^33. 

, y=Ey (6) 

where E;j, i, j = 1, 3, are the components of the three-dimensional elasticity matrix and 

D.. = E.._M2i 
ü33 



With the kinematics as given by equations (1) through (4) and the material 

description as given by equations (5) and (6) the strain energy is: 

U = Ub + Us (7) 

where Ub^jyDbKdxdy (8) 

Us^jAYTDsYdXdy (9) 

fh/2 
and Db = f     D(z)z2dz (10) 

D       J-h/2 

D=kf    E(z)dzk (11) 
s J-h/2 

The variables Ub and Us represent the bending and transverse shear contributions, 

respectively, and k in equation (11) contains shear correction factors to account for the 

non-uniformity of the transverse shear stresses through the plate thickness. 

In equations (8) and (9) the matrices Db and Ds are functions of the thickness of 

plate, h, and of the elastic properties of the different layers. The variable A is the area of 

the middle surface of the plate. For an isotropic homogeneous plate of constant thickness 

Db and Ds become: 



Db = 
Eh3 

12(l-v2) 

V 0 

1 0 
1-v 

2   . 

D„ 
Ehk 

2(1 + v) 

1   0 

0    1 

(12) 

The explicit expressions Ub and Us are then: 

Ub = 
Eh3 

24(1-v2) 
jA{ßx,x +ßL +2vßy,yßx,x +^(ßy,x +ßx,y)

2}dxdy        (13) 

Ehk 
u^47I7^^(Wx+ßx)2+(w-+ßy)2}dxdy (14) 

The variables E and v in equations (12) and (14) are the Young's modulus and Poisson's 

ratio, respectively, and k is the shear correction factor usually taken as 5/6. 

By definition, the bending moments M and shear forces Q are obtained by 

integration of the stresses through the element thickness, h: 

M 

M„ 

fh/2 
C 

Jh/2 
az dz = DbK (15) 

and Q = 
"Qx" fh/2 

= k     a,dzk = D v 
Jh/2     s s 

(16) 



The expression of U as given by equations (7) through (9), or (13) and (14), is used to 

formulate finite elements for the analysis of plates where the transverse shear effects are 

important. The independent quantities subjected to variation are w, ßx and ßy with the 

conditions on the part of the boundary where displacements are prescribed. 

2.2      Stiffness matrix of the DKT element 

The formulation of the DKT element as presented in References [7] through [10] 

is based on the assumption that ßx and ßy vary quadratically over the element, i.e.: 

ßx=ZN,ßx 
i=l 

Py=SN,ß 
(17) 

o 

i=i 

where ß    and ßv  are the nodal values at the corners, and at the mid-nodes, the N;(^,r|) 

are the shape functions given in Appendix A, E, and r\ are the coordinates. 

Introducing the vector of the nodal degrees of freedom: 

uT = [w, eXi eyi w2 eX2 ey2 w3 eX3 ey w4 eX4 ey w5 eXs ey w6 eX6 eyj       (is) 

and using equations (17) and (18), the following expressions are obtained for ßx and ßy: 

ßx=Hlß,Ti)U 

Py=Hj(^,Ti)U 

where Hx and Hy are the nine component vectors of the shape functions. The components 

are functions of the Ni? i = 1, 6 and of the coordinates of the nodes: 



HX|=1.5(a6N6-a5N5) 

H    =b5N5+b6N6 

Hx ^N.-c^-c^ 

HX4=1.5(a4N4-a6N6) 

HX5=b4N4+b6N6 

H    = M -c.N.-c.N 4'M 'ö^ö 

(20) 

HX7=1.5(a5N5-a4N4) 

H    =b4N4+b5N5 

Hv N^-c.N.-cN "VM 51,5 

Hyi=L5(d6N6-dsN5) 

Hy2--N1+e5N5+e6N6 

Hy3 = -Hx2 

Hy4=1.5(d4N4-d6N6) 

Hyj=-N2+e4N4+e6N6 

Hy6 = _H*2 

(21) 

Hy?=1.5(d5N5-d4N4) 

Hy8=-N3+e4N4+e5N5 

Hv = — Hx 
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where k = 4,5,6 for the sides ij = 23, 31, 12 respectively. 

The evaluation of the stiffness matrix follows the standard procedures of the finite 

element displacement method. Using equations (4) and (19), 

K = BU (23) 

where B is the strain-displacement transformation matrix given in Appendix A. 

The stiffness matrix of the DKT element becomes 

1   l-Tl 

KDKT=2AJ|BTDbBd^dn (24) 
o o 

The bending moments M at any point in the element can be obtained using 

equations (15) and (23): 

M(x,y) = DbB(x,y)U (25) 



X = X,+$X21+T1X31 
where (^oj 

y = yi+^y2i + riy3i 

Since, M depends upon all the components of U, M is not unique along the boundary 

shared by two elements. 

The theoretical predictions presented in this study are obtained using a finite 

element mesh consisting of 6085 elements as shown in Figure 2. 

3.       PERFORMANCE OF THE HELICOPTER 

In this section, the experimental performance of the helicopter is determined and 

compared with the theoretical predictions as obtained from the finite element models 

described in section 2. 

3.1       Material Properties 

A Ultrasport helicopter cabin (Model ATI-496) is considered, with a width of 

2.438 m (8 feet) and height of 2.388 m (7ft. 10 inches) as shown in Figure 3. The 

helicopter cabin is made of a total of three different materials. The windows are made of 

acrylic with Young's modulus is 3E9 Pa and density is 1310 kg/m3. The seat which is 

used for passenger compartment flooring and ribs are made of a honeycomb composite 

fiberglass, which is an aircraft grade sandwich panel made from high impact fiberglass 

epoxy facing bonded to a honeycomb core. The fiberglass Young's Modulus is 0.146E9 



Pa and its density is 230 kg/m3. The remaining parts of the helicopter cabin are made of a 

composite fiberglass whose Young's Modulus is 7.8E9 Pa and density is 1600 kg/m . The 

mechanical properties and geometrical parameters of the different materials in the 

helicopter cabin are summarized in Table 1. A photograph of the helicopter cabin and 

ribs is shown in Figures 3(a) and 3(b). 

3.2      Experimental set-up 

3.2.1 Helicopter Door measurement 

The door is suspended to the ceiling of the laboratory using flexible hanging 

cables. The test door is acoustically excited by a speaker driven by the signal source of a 

FFT analyzer (Model CF910, ONO Sokki) through a power Amplifier (Model 6260, JBL. 

Urel Electronic Co.). The amplitude of vibration of the door is monitored by the scanning 

of its vibrating surface using a scanning laser vibrometer (Polytec PI PSV-300, Auburn, 

MA). It is important here to note that the test door is checked in order to accurately 

predict its mode shapes and therefore study the helicopter cabin perfectly. 

3.2.2 Helicopter cabin measurement 

The tests carried out on the helicopter cabin experiment are conducted in an 

anechoic chamber. A photograph of the helicopter cabin and the anechoic chamber is 

shown in Figure 3. The test cabin is excited by a white noise excitation through a shaker 



mounted back wall of the cabin. The amplitude of vibration of the helicopter cabin is 

monitored using a scanning laser vibrometer (Polytec PI PSV-300, Auburn, MA). 

3.3      Numerical and Experimental Results 

The finite element model for the door is first verified. The natural frequencies of 

the free-free door obtained by this model are compared by those obtained experimentally 

and presented in Table 2. The numerical predictions are in good agreement with the 

experimental results. The first three mode shapes of the door are shown in Figure 4. 

Figure 4 shows the mode shapes corresponding to the frequencies listed in Table 2. In 

order to identify the mode shapes and the associated deflections, the surface of the door is 

scanned using a laser vibrometer for modes in free-free boundary condition, respectively. 

A comparison between the experimental and theoretical natural frequencies is presented 

in Figure 5. The figure clearly indicates the good agreement between theoretical 

predictions and the experimental results. 

Next, the helicopter cabin inside anechoic chamber is chosen to measure the 

natural frequencies and mode shapes. The natural frequencies of the helicopter cabin are 

computed the FE model and are also determined experimentally as shown in Table 3. 

Figure 6 display the mode shapes of the FE model corresponding to the frequencies 

shown in Table3. Figure 7 shows a comparison between the theoretical predictions and 

experimental results. 



5     CONCLUSIONS 

This paper has presented the finite element modeling of the helicopter cabin and 

its door. The model is developed to predict the frequencies and mode shapes from such a 

commercial helicopter. The predictions of the finite element model are validated by 

comparing the predicted dynamic characteristics, such as natural frequencies and mode 

shapes, with those obtained experimentally. Excellent agreement is obtained between the 

predictions of the finite element and the experimental results. 

A natural extension of the present study is to augment the passive control of 

vibration and noise radiation from helicopter cabin using Passive Constrained Layer 

Damping (PCLD) treatment placed in strategical locations in the cabin and its door. 

Additional work is needed to study theoretically and experimentally the flow of the 

vibrational energy through the entire cabin of the helicopter in an attempt to control the 

transmission paths from the excitation zones to the critical locations along the helicopter. 
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APPENDIX 

A.l      Shape functions for DKT element 

N,=2(1-^-TIX--^-II) 

N2=$(2$-l) 

N3 = TI(2TI-1) 

N4=4^n 

N5=4r|(l-^-Ti) 

N6=4^(1-^-TI) 

(A.1) 

£, and r| are the area coordinates L2 and L3 [11]. 

A.2      Strain-displacement transformation matrix 

The matrix of strain-displacement is given by: 

m,y\)= 2A 

y3iH^ + y12H^ 

-x31H^ - x12H* „ + y31H^ + y12H T 

where 2A = x31y12 - x12y31 

(A.2) 
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NOMENCLATURE 

x, y, z Cartesian coordinates; 

u, v, w displacements; 

ßx, ßy Rotation of the middle surface; 

r| loss factor of viscoelastic; 

sb bending strain; 

y transverse strain; 

K component vector of curvature; 

x Shear stress; 

Ob bending stress vector; 

as shear stress vector; 

B transformation matrix; 

D constitutive matrix; 

KDKT stiffness matrix; 

N matrix of shape functions; 

Eij The component of the three-dimensional elasticity matrix; 

E Young's modulus; 

ub strain energy of bending; 

Us strain energy of shear; 

u strain energy; 

h thickness of layer; 



M bending moment; 

Q Shear force; 

T kinetic energy; 



TABLES 

Table 1: Properties of the Helicopter Cabin 

Young's Modulus 

[Pa] 

Density 

[kg/m3] 

Thickness 

[m] 

Window 5.0E9 1310 1.4E-3 

Skin 12E9 1650 1.4E-3 

Back, Seat & Ribs 0.146E9 230 10.16E-3 

Skid 0.4E9 2700 * 

Table 2: Natural frequencies [Hz] of different door configurations. 

Mode Experiment FEM 

1 10.3 10.25 

2 12.5 12.94 

3 21.2 25.46 

Table 3: Natural frequencies [Hz] of different helicopter cabin configurations. 

Mode Shapes Theoretical Experimental 

Bottom 1st Bending 7.57 7 

Bottom 2nd Bending 14.86 13.5 

Door (Window) & Bottom Torsion 17.16 15.5 

Door 22.43 26.5 

Front Window 62.61 65 
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